R4B10 - Cryptographie et Sécurité

Utilisation, Outils et Gestion de clés

Bruno BEAUFILS

2024/2025

1. Utilisation

2. Outils cryptographiques

3. Gestion des clés

Utilisations principales en informatique

Protéger des données

- données = suite **quelconque** d'octets
 - longueur quelconque
 - codage quelconque
 - ce que représente les octets n'a pas d'importance
 - UTF-8, ASCII, PNG, etc.
- convention terminologique
 - données à protéger = message ou fichier

Stockage

- protéger des données en cas d'accès aux fichiers
 - ajouter une protection en cas de viol de propriété

Transmission réseau

- protéger les communications en cas d'interception des paquets
 - empêcher l'accès aux données capturées
 - garantir l'intégrité des données reçues

Code d'authentification de message (MAC)

- Problème de l'intégrité
 - message peut être modifié (volontairement ou pas) entre émission et réception
 - distribution du message et d'un haché du message
 - distribuer un message et son empreinte ne suffit pas
 - interception possible des 2
 - utilisation de canaux différents complexes
- MAC = Message Authentication Codes
 - la fonction de hachage avec une clé secrète
 - pour lire le haché il faut connaître la clé secrète
- HMAC = Hash-based Message Authentication Code
 - manière de transformer une fonction de hachage classique en MAC
 - Exemples: HMAC-MD5, HMAC-SHA256
- CMAC = Chipher-based Message Authentication Code
 - manière d'utiliser un algorithme de chiffrement symétrique en MAC
 - Exemples : CMAC-AES, CMAC-DES, etc.

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature classique
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - non-répudiation : le signataire ne peut pas dire ne pas l'être

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée
 - transmettre le résultat avec le message envoyé

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée
 - transmettre le résultat avec le message envoyé

R4B10 - Cryptographie et Sécurité Utilisation

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée
 - transmettre le résultat avec le message envoyé
- Vérification
 - calculer le HMAC du message reçu

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée
 - transmettre le résultat avec le message envoyé
- Vérification
 - calculer le HMAC du message reçu
 - déchiffrer le HMAC reçu avec la clé publique

- Mécanisme pour garantir l'authenticité d'une suite d'octets
 - comme pour la signature *classique*
- Garanties
 - **authentification**: identification du signataire
 - intégrité : pas de modification entre la signature et la lecture
 - **non-répudiation** : le signataire ne peut pas dire ne pas l'être
- Construction
 - créer un code d'authenfication de message de hachage à clé (HMAC)
 - chiffrer le HMAC avec la clé privée
 - transmettre le résultat avec le message envoyé
- Vérification
 - calculer le HMAC du message reçu
 - déchiffrer le HMAC reçu avec la clé publique
 - 3 comparer le HMAC calculé avec celui reçu

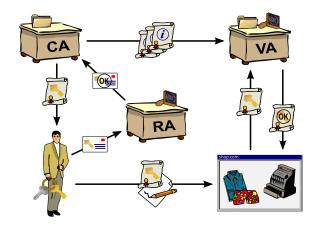
2. Outils cryptographiques

Outils principaux sous Linux

- 2 suite d'outils
 - OpenSSL
 - ▶ GnuPG
- offrent tout ce qu'il faut pour
 - utiliser la PKI TLS
 - utiliser la PKI OpenPGP
 - chiffrer et signer des messages
- **beaucoup** d'options

openssl(1) gpg(1)

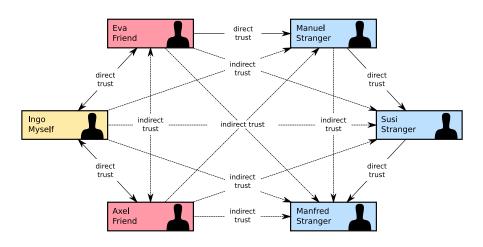
3. Gestion des clés


Infrastructure de gestion de clés

- Système permettant de gérer des clés
 - matériels
 - composants cryptographiques
 - logiciels
 - procédures humaines
 - ► PKI = Public Key Infrastructure
- Objectifs
 - lié une clé à une identité
 - assurer la confiance lors de l'utilisation d'une clé
- 2 approches différentes
 - Centralisé et hiérarchique
 - confiance donné à un tiers (autorité de certification)
 - Décentralisé
 - confiance donné à des proches (réseau de confiance)

Certificats

- fichier contenant
 - une clé publique
 - informations d'identification
 - signature
- utilisation
 - identifier
 - chiffrer


Autorités de certifications

Chris, CC BY-SA 3.0, via Wikimedia Commons

- CA: autorité de certification
- VA: autorité de validation
- RA: autorité d'enregistrement

Réseau de confiance (web of trust)

Kku, CC BY-SA 4.0, via Wikimedia Commons