Introduction aux langages formels Grammaires

Frédéric Guyomarch et Cédric Lhoussaine

24 février 2025

Grammaires

Définition : Grammaire

Une grammaire est un quadruplet $G = (V, \Sigma, \mathcal{P}, S)$ où

- V est un alphabet de symboles non-terminaux (ou variables) (vocabulaire);
- Σ est un alphabet de symboles **terminaux**;
- $\mathcal{P} \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ est un ensemble de **règles** ou **productions** de la forme $u \to v$.
- $S \in V$ est l'axiome (à partir duquel les mots sont générés).

Définitions

Définition : Dérivation de mots

Soit $G = (V, \Sigma, \mathcal{P}, S)$, $u \in (V \cup \Sigma)^+$ et $v \in (V \cup \Sigma)^*$, alors v peut être **dérivé** de u à partir de G, dénoté $u \Longrightarrow_G v$, ssi $\exists x, y \ V^*$ tels que :

- u = xu'y
- v = xv'y
- $u' \rightarrow v' \in \mathcal{P}$.

Exemple : Dérivation de 1+(2*3)

$$S \Rightarrow \underline{S} + S \Rightarrow \underline{C} + S \Rightarrow 1 + \underline{S} \Rightarrow 1 + (\underline{S}) \Rightarrow 1 + (\underline{S} * S)$$
$$\Rightarrow 1 + (C * S) \Rightarrow 1 + (2 * S) \Rightarrow 1 + (2 * C) \Rightarrow 1 + (2 * S)$$

Définitions

Définition : Langage engendré

Le langage engendré (ou généré) par une grammaire $G=(V,\Sigma,\mathcal{P},S)$ est

$$\mathcal{L}(G) = \{ w \mid S \underset{G}{\overset{*}{\Longrightarrow}} w \}$$

Définition : Grammaire régulière

Une grammaire est dite **régulière** si toutes ses règles sont de la forme $A \to wB$ ou $A \to w$ où $A, B \in V$ et $w \in \Sigma^*$.