
1

Cours R2.02

Introduction à l’Interaction

 Humain-Machine

Cours 1 : gestionnaires de placement

Géry Casiez	 https://gery.casiez.net

Département informatique - IUT de Lille - Université de Lille

http://www.apple.com/uk

Plan du cours en 9 semaines
1. Introduction à l’interaction, placement

2. Programmation événementielle

3. Widgets et événements (1/2)

4. Widgets et événements (2/2)

5. Conception et prototypage (1/2)

6. Conception et prototypage (2/2)

7. Heuristiques et recommandations

8. Modèles et théories

9. Méthodes d’évaluation des IHM

2

Département informatique - IUT de Lille - Université de Lille

Principe général
3

Département informatique - IUT de Lille - Université de Lille

Widgets et conteneurs

Les widgets doivent être placés dans des conteneurs.

4

Département informatique - IUT de Lille - Université de Lille

BorderPane

VBox

HBox

Label Pane TextField

ListView

HBox

Button Slider Label ImageView Slider
x3

FolderView
center bottom left

Stage et Scene
5

Département informatique - IUT de Lille - Université de Lille

Conteneurs (Pane) et Node
6

Département informatique - IUT de Lille - Université de Lille

Control et Node
7

Département informatique - IUT de Lille - Université de Lille

CHAPTER 5 N MAKING SCENES

150

The JavaFX class library provides many classes to represent branch and leaf nodes in a scene graph.
The Node class in the javafx.scene package is the superclass of all nodes in a scene graph. Figure 5-2 shows
a partial class diagram for classes representing nodes.

A scene always has a root node. If the root node is resizable, for example, a Region or a Control, it tracks
the size of the scene. That is, if the scene is resized, the resizable root node resizes itself to fill the entire scene.
Based on the policy of a root node, the scene graph may be laid out again when the size of the scene changes.

A Group is a nonresizable Parent node that can be set as the root node of a scene. If a Group is the root
node of a scene, the content of the scene graph is clipped by the size of the scene. If the scene is resized, the
scene graph is not laid out again.

Parent is an abstract class. It is the base class for all branch nodes in a scene graph. If you want to add
a branch node to a scene graph, use objects of one of its concrete subclasses, for example, Group, Pane,
HBox, or VBox. Classes that are subclasses of the Node class, but not the Parent class, represent leaf nodes, for
example, Rectangle, Circle, Text, Canvas, or ImageView. The root node of a scene graph is a special branch
node that is the topmost node. This is the reason you use a Group or a VBox as the root node while creating
a Scene object. I will discuss classes representing branch and leaf nodes in detail in Chapters 10 and 12.
Table 5-1 lists some of the commonly used properties of the Scene class.

Figure 5-2. A partial class diagram for the javafx.scene.Node class

Pane

Pane est un noeud (Node) particulier dont le rôle est de contenir
d’autres noeuds stockés sous la forme d’une ObervableList<Node>

Contient le nombre et la liste des noeuds

Parmi l’ensemble des noeuds que contient un Pane peut se trouver
une instance de Pane

On crée ainsi une hiérarchie de noeuds qui est appelée graphe de
scène

8

Département informatique - IUT de Lille - Université de Lille

Positionnement absolu

Définition de la taille et de la position de chaque composant

L’origine est le coin supérieur gauche du conteneur

x

y

9

Département informatique - IUT de Lille - Université de Lille

Gestionnaires de placement (layout manager)

Gestionnaires de placement : placement dynamique des enfants d’un
nœud du graphe de scène

Calcul de position et des dimensions de chaque Node
Généralement, imbrication géométrique d’un widget dans son parent

Contraintes

Taille « naturelle » de chaque fils
Taille imposée par le parent
Contraintes de placement spécifiées par le programmeur

10

Département informatique - IUT de Lille - Université de Lille

Stratégies de placement

Comment un conteneur agence-t-il visuellement les widgets qu’il
contient ?

Que se passe-t-il quand on agrandit la fenêtre ? Les widgets
doivent-ils s’agrandir ? Ajoute-t-on de l’espace ? Où ?

11

Département informatique - IUT de Lille - Université de Lille

Minimum, maximum, preferred sizes

Chaque noeud a quatre tailles :

La taille idéale (preferred size)
La taille minimale (minimum size)
La taille maximale (maximum size)
La taille réelle

Un layout va essayer de rendre la taille réelle la plus proche possible
de la taille préférée compte tenu des contraintes dues à sa stratégie
et dues à la taille réelle du conteneur

12

Département informatique - IUT de Lille - Université de Lille

Layout Pane Classes
13

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

304

A layout pane has a layout policy that controls how the layout pane lays out its children. For example,
a layout pane may lay out its children horizontally, vertically, or in any other fashion.

JavaFX contains several layout-related classes, which are the topic of discussion in this chapter. A layout
pane performs two things:

It computes the position (the x and y coordinates) of the node within its parent.u�

It computes the size (the width and height) of the node.u�

For a 3D node, a layout pane also computes the z coordinate of the position and the depth of the size.
The layout policy of a container is a set of rules to compute the position and size of its children. When

I discuss containers in this chapter, pay attention to the layout policy of the containers as to how they
compute the position and size of their children. A node has three sizes: preferred size, minimum size, and
maximum size. Most of the containers attempt to give its children their preferred size. The actual (or current)
size of a node may be different from its preferred size. The current size of a node depends on the size of the
window, the layout policy of the container, and the expanding and shrinking policy for the node, etc.

Layout Pane Classes
JavaFX contains several container classes. Figure 10-1 shows a class diagram for the container classes.
A container class is a subclass, direct or indirect, of the Parent class.

Node

Parent

TextFlow TilePane

FlowPane

GridPane

AnchorPaneStackPane

BorderPane

VBox

HBox

Pane

RegionGroup

Figure 10-1. A class diagram for container classes in JavaFX

Group

Pas de positionnement des noeuds réalisé (tous positionnés en (0,0)
par défaut)

Tous les effets, transformations et changements de propriétés sont
appliqués à tous les noeuds du groupe

14

Département informatique - IUT de Lille - Université de Lille

Region

Classe dont hérite les gestionnaires de placement
15

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

314

Tip N The Region class is designed to support the CSS3 specification for backgrounds and borders, as they
are applicable to JavaFX. The specification for “CSS Backgrounds and Borders Module Level 3” can be found
online at http://www.w3.org/TR/2012/CR-css3-background-20120724/.

By default, a Region defines a rectangular area. However, it can be changed to any shape. The drawing
area of a Region is divided into several parts. Depending on the property settings, a Region may draw outside
of its layout bounds. Parts of a Region:

Backgrounds (fills and images)u�

Content Areau�

Paddingu�

Borders (strokes and images)u�

Marginu�

Region Insetsu�

Figure 10-7 shows parts of a Region. The margin is not directly supported as of JavaFX 2. You can get the
same effect by using Insets for the border.

Margin

Border
Padding

Content Area

Margin edge

Border outer edge

Border inner edge

Padding edge
Content area edge

Layout bounds edge

Region insets

Figure 10-7. Different parts of a Region

A region may have a background that is drawn first. The content area is the area where the content of
the Region (e.g., controls) are drawn.

Padding is an optional space around the content area. If the padding has a zero width, the padding edge
and the content area edge are the same.

The border area is the space around the padding. If the border has a zero width, the border edge and the
padding edge are the same.

Margin is the space around the border. Padding and margin are very similar. The only difference
between them is that the margin defines the space around the outside edge of the border, whereas the
padding defines the space around the inside edge of the border. Margins are supported for controls when
they are added to panes, for example, HBox, VBox, etc. However, margins are not directly supported for a
Region directly.

The content area, padding, and borders affect the layout bounds of the Region. You can draw borders
outside the layout bounds of a Region, and those borders will not affect the layout bounds of the Region.
Margin does not affect the layout bounds of the Region.

BorderPane

Satisfait les exigences de la plupart des applications de bureau.

16

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

358

Content Bias of a FlowPane
Notice that the number of rows in a horizontal FlowPane depends on its width and the number of columns
in a vertical FlowPane depends on its height. That is, a horizontal FlowPane has a horizontal content bias and
a vertical FlowPane has a vertical content bias. Therefore, when you are getting the size of a FlowPane, make
sure to take into account its content bias.

Understanding BorderPane
A BorderPane divides its layout area into five regions: top, right, bottom, left, and center. You can place at
most one node in each of the five regions. Figure 10-31 shows five Buttons placed in the five regions of the
BorderPane – one Button in each region. The Buttons have been labeled the same as their regions in which
they are placed. Any of the regions may be null. If a region is null, no space is allocated for it.

In a typical Windows application, a screen uses the five regions to places its content.

A menu or a toolbar at the topu�

A status bar at the bottomu�

A navigation panel on the leftu�

Additional information on the rightu�

Main content in the centeru�

A BorderPane satisfies all the layout requirements for a typical Windows-based GUI screen. This is the
reason that a BorderPane is most often used as the root node for a scene. Typically, you have more than five
nodes in a window. If you have more than one node to place in one of the five regions of a BorderPane, add
the nodes to a layout pane: for example, an HBox, a VBox, etc., and then add the layout pane to the desired
region of the BorderPane.

A BorderPane uses the following resizing policies for its children:

The children in the top and bottom regions are resized to their preferred heights. Their u�
widths are extended to fill the available extra horizontal space, provided the maximum
widths of the children allow extending their widths beyond their preferred widths.

The children in the right and left regions are resized to their preferred widths. Their u�
heights are extended to fill the extra vertical space, provided the maximum heights of
the children allow extending their heights beyond their preferred heights.

The child node in the center will fill the rest of the available space in both directions.u�

Figure 10-31. Five regions of a BorderPane

FlowPane

Place les noeuds les uns à côté des autres ou les uns en dessous
des autres

17

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

351

The orientation of a FlowPane, which can be set to horizontal or vertical, determines the direction of the
flow for its content. In a horizontal FlowPane, the content flows in rows. In a vertical FlowPane, the content
flows in columns. Figure 10-26 and Figure 10-27 show a FlowPane with ten buttons. The buttons are added in
the order they have been labeled. That is, Button 1 is added before Button 2. The FlowPane in Figure 10-26
has a horizontal orientation, whereas the FlowPane in Figure 10-27 has a vertical orientation. By default, a
FlowPane has a horizontal orientation.

Creating FlowPane Objects
The FlowPane class provides several constructors to create FlowPane objects with a specified orientation
(horizontal or vertical), a specified horizontal and vertical spacing between children, and a specified initial
list of children.

// Create an empty horizontal FlowPane with 0px spacing
FlowPane fpane1 = new FlowPane();

// Create an empty vertical FlowPane with 0px spacing
FlowPane fpane2 = new FlowPane(Orientation.VERTICAL);

// Create an empty horizontal FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane3 = new FlowPane(5, 10);

// Create an empty vertical FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane4 = new FlowPane(Orientation.VERTICAL, 5, 10);

// Create a horizontal FlowPane with two Buttons and 0px spacing
FlowPane fpane5 = new FlowPane(new Button("Button 1"), new Button("Button 2"));

Figure 10-26. A horizontal flow pane showing ten buttons

Figure 10-27. A vertical flow pane showing ten buttons

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

351

The orientation of a FlowPane, which can be set to horizontal or vertical, determines the direction of the
flow for its content. In a horizontal FlowPane, the content flows in rows. In a vertical FlowPane, the content
flows in columns. Figure 10-26 and Figure 10-27 show a FlowPane with ten buttons. The buttons are added in
the order they have been labeled. That is, Button 1 is added before Button 2. The FlowPane in Figure 10-26
has a horizontal orientation, whereas the FlowPane in Figure 10-27 has a vertical orientation. By default, a
FlowPane has a horizontal orientation.

Creating FlowPane Objects
The FlowPane class provides several constructors to create FlowPane objects with a specified orientation
(horizontal or vertical), a specified horizontal and vertical spacing between children, and a specified initial
list of children.

// Create an empty horizontal FlowPane with 0px spacing
FlowPane fpane1 = new FlowPane();

// Create an empty vertical FlowPane with 0px spacing
FlowPane fpane2 = new FlowPane(Orientation.VERTICAL);

// Create an empty horizontal FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane3 = new FlowPane(5, 10);

// Create an empty vertical FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane4 = new FlowPane(Orientation.VERTICAL, 5, 10);

// Create a horizontal FlowPane with two Buttons and 0px spacing
FlowPane fpane5 = new FlowPane(new Button("Button 1"), new Button("Button 2"));

Figure 10-26. A horizontal flow pane showing ten buttons

Figure 10-27. A vertical flow pane showing ten buttons

HBox

Place les noeuds sur une ligne horizontale

Possibilité de contrôler priorité d’agrandissement de certains noeuds

18

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

335

Listing 10-9. Using the HBox Layout Pane

// HBoxTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class HBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 HBox root = new HBox(10); // 10px spacing
 root.getChildren().addAll(nameLbl, nameFld, okBtn, cancelBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using HBox");
 stage.show();
 }
}

Figure 10-18. An HBox with a Label, a TextField, and two Buttons

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

341

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Horizontal Grow Priority in an HBox");
 stage.show();
 }
}

Setting Margins for Children
Margins are extra spaces added outside the edges of a node. The following snippet of code shows how to add
margins to the children of an HBox.

Label nameLbl = new Label("Name:");
TextField nameFld = new TextField();
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");

HBox hbox = new HBox(nameLbl, nameFld, okBtn, cancelBtn);

// Set a margin for all children:
// 10px top, 2px right, 10px bottom, and 2px left
Insets margin = new Insets(10, 2, 10, 2);
HBox.setMargin(nameLbl, margin);
HBox.setMargin(nameFld, margin);
HBox.setMargin(okBtn, margin);
HBox.setMargin(cancelBtn, margin);

Initial

After
expanding
horizontally

Figure 10-21. An HBox with a TextField set to always grow horizontally

VBox

Place ses noeuds suivant une seule colonne
19

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

344

VBox Properties
The VBox class declares three properties as listed in Table 10-3.

The Alignment Property
Using the alignment property is simple. It specifies how children are aligned within the content area
of the VBox. By default, a VBox allocates just enough space for its content to lay out all children at their
preferred size. The effect of the alignment property is noticeable when the VBox grows bigger than its
preferred size.

The program in Listing 10-14 uses a VBox with two Buttons. It sets the alignment of the VBox to
Pos.BOTTOM_RIGHT. It sets the preferred size of the VBox a little bigger than needed to accommodate all its
children, so you can see the effect of the alignment. The resulting window is shown in Figure 10-23. When
you resize the window, the children stay aligned in the bottom-right area.

Figure 10-22. A VBox with a Label, a TextField, and two Buttons

Table 10-3. Properties Declared in the VBox Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of children relative to the content area
of the VBox. The default value is Pos.TOP_LEFT.

fillWidth BooleanProperty It specifies whether the resizable children are resized to fill the
full width of the VBox or they are given their preferred widths.
The default value is true.

spacing DoubleProperty It specifies the vertical spacing between adjacent children.
The default value is zero.

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

347

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("New");
 Button b2 = new Button("New Modified");
 Button b3 = new Button("Not Modified");
 Button b4 = new Button("Data Modified");

 // Set the max width of the buttons to Double.MAX_VALUE,
 // so they can grow horizontally
 b1.setMaxWidth(Double.MAX_VALUE);
 b2.setMaxWidth(Double.MAX_VALUE);
 b3.setMaxWidth(Double.MAX_VALUE);
 b4.setMaxWidth(Double.MAX_VALUE);

 VBox root = new VBox(10, b1, b2, b3, b4);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using VBox fillWidth Property");
 stage.show();
 }
}

Figure 10-24. A VBox with some control, where the user can change the fillWidth property

When you expand the VBox horizontally in Listing 10-16, all buttons grow to fill the available extra space.
To prevent the buttons growing when the VBox expands in the horizontal direction, you can add the VBox in
an HBox and add the HBox to the scene.

TilePane

Disposition des noeuds selon une grille dont toutes les cellules ont la
même taille

20

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

371

Use the setMargin(Node child, Insets value) static method of the StackPane class to set the margin
for children. The getMargin(Node child) static method returns the margin for a child node.

// Set 10px margin around the topLeft child node
StackPane.setMargin(topLeft, new Insets(10));
...
// Get the margin of the topLeft child node
Insets margin = StackPane.getMargin(topLeft);

Use null to reset the constraints to the default value. Use the clearConstraints(Node child) static
method of the StackPane to reset all constraints for a child at once.

// Clear the alignment and margin constraints for the topLeft child node
StackPane.clearConstraints(topLeft);

After you clear all constraints for a child node, it will use the current value of the alignment property of
the StackPane as its alignment and 0px as the margins.

Understanding TilePane
A TilePane lays out its children in a grid of uniformly sized cells, known as tiles. TilePanes work similar
to FlowPanes with one difference: In a FlowPane, rows and columns can be of different heights and widths,
whereas in a TilePane, all rows have the same heights and all columns have the same widths. The width of
the widest child node and the height of the tallest child node are the default widths and heights of all tiles in
a TilePane.

The orientation of a TilePane, which can be set to horizontal or vertical, determines the direction of
the flow for its content. By default, a TilePane has a horizontal orientation. In a horizontal TilePane, the
content flows in rows. The content in rows may flow from left to right (the default) or from right to left. In a
vertical TilePane, the content flow in columns. Figures 10-37, 10-38, and 10-26 show horizontal and vertical
TilePanes.

Figure 10-37. A horizontal TilePane showing months in a year

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

372

You can customize the layout in a TilePane using its properties or setting constraints on individual
children:

You can override the default size of tiles.u�

You can customize the alignment of the entire content of a u� TilePane within its
content area, which defaults to Pos.TOP_LEFT.

You can also customize the alignment of each child node within its tile, which u�
defaults to Pos.CENTER.

You specify the spacing between adjacent rows and columns, which defaults to 0px.u�

You can specify the preferred number of columns in a horizontal u� TilePane and the
preferred number of rows in a vertical TilePane. The default values for the preferred
number of rows and columns are five.

Creating TilePane Objects
The TilePane class provides several constructors to create TilePane objects with a specified orientation
(horizontal or vertical), a specified horizontal and vertical spacing between children, and a specified initial
list of children.

// Create an empty horizontal TilePane with 0px spacing
TilePane tpane1 = new TilePane();

// Create an empty vertical TilePane with 0px spacing
TilePane tpane2 = new TilePane(Orientation.VERTICAL);

// Create an empty horizontal TilePane with 5px horizontal
// and 10px vertical spacing
TilePane tpane3 = new TilePane(5, 10);

// Create an empty vertical TilePane with 5px horizontal
// and 10px vertical spacing
TilePane tpane4 = new TilePane(Orientation.VERTICAL, 5, 10);

// Create a horizontal TilePane with two Buttons and 0px spacing
TilePane tpane5 = new TilePane(new Button("Button 1"), new Button("Button 2"));

Figure 10-38. A vertical TilePane showing months in a year

GridPane

Utilisation d’une grille

Un noeud peut occuper plusieurs cellules

21

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

380

Use null to reset the constraints to the default value. Use the clearConstraints(Node child) static
method of the TilePane to reset all constraints for a child at once.

// Clear the tile alignment and margin constraints for the topLeft child node
TilePane.clearConstraints(topLeft);

After you clear all constraints for a child node, it will use the current value of the tileAlignment
property of the TilePane as its alignment and 0px as the margins.

Understanding GridPane
GridPane is one of the most powerful layout panes. With power comes complexity. Therefore, it is also a bit
complex to learn.

A GridPane lays out its children in a dynamic grid of cells arranged in rows and columns. The grid is
dynamic because the number and size of cells in the grid are determined based on the number of children.
They depend on the constraints set on children. Each cell in the grid is identified by its position in the
column and row. The indexes for columns and rows start at 0. A child node may be placed anywhere in the
grid spanning more than one cell. All cells in a row are of the same height. Cells in different rows may have
different heights. All cells in a column are of the same width. Cells in different columns may have different
widths. By default, a row is tall enough to accommodate the tallest child node in it. A column is wide enough
to accommodate the widest child node in it. You can customize the size of each row and column. GridPane
also allows for vertical spacing between rows and horizontal spacing between columns.

GridPane does not show the grid lines by default. For debug purposes, you can show the grid lines.
Figure 10-41 shows three instances of the GridPane. The first GridPane shows only the grid lines and no child
nodes. The second GridPane shows the cell positions, which are identified by row and column indexes. In
the figure, (cM, rN) means the cell at the (M+1)th column and the (N+1)th row. For example, (c3, r2) means
the cell at the 4th column and the 3rd row. The third GridPane shows six buttons in the grid. Five of the
buttons spans one row and one column; one of them spans two rows and one column.

Figure 10-41. GridPanes with grid only, with cell positions, and with children placed in the grid

In a GridPane, rows are indexed from top to bottom. The top row has an index of 0. Columns are
indexed from left to right or from right to left. If the nodeOrientation property for the GridPane is set to
LEFT_TO_RIGHT, the leftmost column has index 0. If it is set to RIGHT_TO_LEFT, the rightmost column has an
index of 0. The second grid in Figure 10-41 shows the leftmost column having an index of 0, which means
that its nodeOrientation property is set from LEFT_TO_RIGHT.

StackPane

Empile les noeuds les uns au dessus des autres

Utile pour créer des effets visuels

22

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

363

Understanding StackPane
A StackPane lays out its children in a stack of nodes. It is simple to use. However, it provides a powerful
means to overlay nodes. Children are drawn in the order they are added. That is, the first child node is drawn
first; the second child node is drawn next, etc. For example, overlaying text on a shape is as easy as using a
StackPane: add the shape as the first child node and the text as the second child node. The shape will be
drawn first followed by the text, which makes it seem as if the text is a part of the shape.

Figure 10-33 shows a window with a StackPane set as the root node for its scene. A Rectangle shape
and a Text node with text “A Rectangle” are added to the StackPane. The Text is added last, which overlays
the Rectangle. The outer border is the border of the StackPane. The dashed inner border is the border of the
Rectangle.

Figure 10-33. A Text node overlaying a Rectangle in a StackPane

Tip N You can create very appealing GUI using StackPanes by overlaying different types of nodes. You can
overlay text on an image to get an effect as if the text were part of the image. And you can overlay different
types of shapes to create a complex shape. Remember that the node that overlays other nodes is added last to
the StackPane.

The preferred width of a StackPane is the width of its widest children. Its preferred height is the height of
its tallest children. StackPane does clip its content. Therefore, its children may be drawn outside its bounds.

A StackPane resizes its resizable children to fill its content area, provided their maximum size allows
them to expand beyond their preferred size. By default, a StackPane aligns all its children to the center of its
content area. You can change the alignment for a child node individually or for all children to use the same
alignment.

Creating StackPane Objects
The StackPane class provides constructors to create objects with or without children.

// Create an empty StackPane
StackPane spane1 = new StackPane();

// Add a Rectangle and a Text to the StackPane
Rectangle rect = new Rectangle(200, 50);
rect.setFill(Color.LAVENDER);
Text text = new Text("A Rectangle");
spane1.getChildren().addAll(rect, text);

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

367

 spane.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 return spane;
 }
}

StackPane Properties
The StackPane class has an alignment property of the ObjectProperty<Pos> type. The property defines
the default alignment of all children within the content area of the StackPane. By default, its value is set to
Pos.CENTER, which means that all children, by default, are aligned in the center of the content area of the
StackPane. This is what we have seen in our previous examples. If you do not want the default alignment for
all children, you can change it to any other alignment value. Note that changing the value of the alignment
property sets the default alignment for all children.

Individual children may override the default alignment by setting its alignment constraint. We will
discuss how to set the alignment constraint on a child node in the next section.

StackPane has several other uses besides overlaying nodes. Whenever you have a requirement to align
a node or a collection of nodes in a specific position, try using a StackPane. For example, if you want to
display text in the center of your screen, use a StackPane with a Text node as the root node of the scene. The
StackPane takes care of keeping the text in the center as the window is resized. Without a StackPane, you will
need to use binding to keep the text positioned in the center of the window.

The program in Listing 10-23 uses five StackPanes in an HBox. Each StackPane has a Rectangle overlaid
with a Text. The alignment for the StackPane, and hence for all its children, is used as the text for the Text
node. Figure 10-35 shows the window. Notice that the Rectangles in StackPanes are bigger than the Texts.
Therefore, the Rectangles occupy the entire content area of the StackPanes and they seem not to be affected
by the alignment property.

Listing 10-23. Using the Alignment Property of a StackPane

// StackPaneAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;

Figure 10-34. Overlaying a Rectangle on a Text and vice versa

AnchorPane
23

Département informatique - IUT de Lille - Université de Lille

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

404

The Margin Constraints
Use the setMargin(Node child, Insets value) static method of the GridPane class to set the margin
(the space around the layout bounds) for children. The getMargin(Node child) static method returns the
margin for a child node.

// Set 10px margin around the b1 child node
GridPane.setMargin(b1, new Insets(10));
...
// Get the margin of the b1 child node
Insets margin = GridPane.getMargin(b1);

Use null to reset the margin to the default value, which is zero.

Clearing All Constraints
Use the clearConstraints(Node child) static method of the GridPane class to reset all constraints
(columnIndex, rowIndex, columnSpan, rowSpan, halignment, valignment, hgrow, vgrow, margin) for a child at
once.

// Clear all constraints for the b1 child node
GridPane.clearConstraints(b1);

Understanding AnchorPane
An AnchorPane lays out its children by anchoring the four edges of its children to its own four edges at a
specified distance. Figure 10-53 shows a child node inside an AnchorPane with an anchor distance specified
on all four sides.

Bottom
anchor

Right
anchor

Left
anchor

Top anchor

A child node
Content area

of the
AnchorPane

Figure 10-53. The four side constraints for a child node in an AnchorPane

An AnchorPane may be used for two purposes:

For aligning children along one or more edges of the u� AnchorPane

For stretching children when the u� AnchorPane is resized

The specified distance between the edges of the children and the edges of the AnchorPane is called the
anchor constraint for the sides it is specified. For example, the distance between the top edge of the children
and the top edge of the AnchorPane is called topAnchor constraint, etc. You can specify at most four anchor
constraints for a child node: topAnchor, rightAnchor, bottomAnchor, and leftAnchor.

When you anchor a child node to the two opposite edges (top/bottom or left/right), the children are
resized to maintain the specified anchor distance as the AnchorPane is resized.

CHAPTER 10 N UNDERSTANDING LAYOUT PANES

408

Listing 10-36. Using an AnchorPane to Align Children to Its Corners

// AnchorPaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.AnchorPane;
import javafx.stage.Stage;

public class AnchorPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button topLeft = new Button("Top Left");
 AnchorPane.setTopAnchor(topLeft, 10.0);
 AnchorPane.setLeftAnchor(topLeft, 10.0);

 Button bottomRight = new Button("Botton Right");
 AnchorPane.setBottomAnchor(bottomRight, 10.0);
 AnchorPane.setRightAnchor(bottomRight, 10.0);

 AnchorPane root = new AnchorPane();
 root.getChildren().addAll(topLeft, bottomRight);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using an AnchorPane");
 stage.show();
 }
}

Initial

After resizing

Figure 10-55. Two Buttons in an AnchorPane aligned at top-left and bottom-right corners

TabPane
24

Département informatique - IUT de Lille - Université de Lille

CHAPTER 12 N UNDERSTANDING CONTROLS

590

A TabPane is divided into two parts: header area and content area. The header area displays the titles
of tabs; the content area displays the content of the selected tab. The header area is subdivided into the
following parts:

Headers regionu�

Tab header backgroundu�

Control buttons tabu�

Tab areau�

Figure 12-72 shows parts of the header area of a TabPane. The headers region is the entire header area.
The tab header background is the area occupied by the titles of the tabs. The control buttons tab contains
control buttons that are displayed when the width of the TabPane cannot display all of the tabs. The control
button tab lets you select the tabs that are currently not visible. The tab area contains a Label and a close
button (the X icon next to the tab label). The Label displays the text and icon for a tab. The close button is
used to close a selected tab.

Figure 12-71. A window with a TabPane, which contains two tabs

Control buttons tab

Tab header backgroundTab

Headers region Close button

Figure 12-72. Different parts of the header of a TabPane

Creating Tabs
You can create a tab using the default constructor of the Tab class with an empty title:

Tab tab1 = new Tab();

SplitPane
25

Département informatique - IUT de Lille - Université de Lille

CHAPTER 12 N UNDERSTANDING CONTROLS

557

You can create a SplitPane using the default constructor of the SplitPane class:

SplitPane sp = new SplitPane();

The getItems() method of the SplitPane class returns the ObservableList<Node> that stores the list of
nodes in a SplitPane. Add all your nodes to this list, as shown in the following code:

// Create panes
GridPane leftPane = new GridPane();
GridPane centerPane = new GridPane();
GridPane rightPane = new GridPane();

/* Populate the left, center, and right panes with controls here */

// Add panels to the a SplitPane
SplitPane sp = new SplitPane();
sp.getItems().addAll(leftPane, centerPane, rightPane);

By default, SplitPane places its nodes horizontally. Its orientation property can be used to specify the
orientation:

// Place nodes vertically
sp.setOrientation(Orientation.VERTICAL);

A divider can be moved between the leftmost and rightmost edges or topmost and bottommost edges
provided it does not overlap any other divider. The divider position can be set between 0 and 1. The position
0 means topmost or leftmost. The position 1 means bottommost or rightmost. By default, a divider is placed
in the middle with its position set to 0.5. Use either of the following two methods to set the position of a
divider:

u� setDividerPositions(double... positions)

u� setDividerPosition(int dividerIndex, double position)

The setDividerPositions() method takes the positions of multiple dividers. You must provide
positions for all dividers from starting up to the one you want to set the positions.

If you want to set the position for a specific divider, use the setDividerPosition() method. The first
divider has the index 0. Positions passed in for an index outside the range are ignored.

Divider

Figure 12-57. A window with a horizontal SplitPane

Toolbar
26

Département informatique - IUT de Lille - Université de Lille

CHAPTER 12 N UNDERSTANDING CONTROLS

586

Understanding the ToolBar Control
ToolBar is used to display a group of nodes, which provide the commonly used action items on a screen.
Typically, a ToolBar control contains the commonly used items that are also available through a menu and a
context menu.

A ToolBar control can hold many types of nodes. The most commonly used nodes in a ToolBar are
buttons and toggle buttons. Separators are used to separate a group of buttons from others. Typically,
buttons are kept smaller by using small icons, preferably 16px by 16px in size.

If the items in a toolbar overflow, an overflow button appears to allow users to navigate to the hidden
items. A toolbar can have the orientation of horizontal or vertical. A horizontal toolbar arranges the items
horizontally in one row. A vertical toolbar arranges the items in one column. Figure 12-70 shows two
toolbars: one has no overflow and one has an overflow. The one with an overflow displays an overflow
button (>>). When you click the overflow button, the hidden toolbar items are displayed for selection.

A toolbar with no overflow A toolbar with an overflow An overflow button

Figure 12-70. A horizontal toolbar with three buttons

You will use the following four ToolBar items in the examples in this chapter:

Button rectBtn = new Button("", new Rectangle(0, 0, 16, 16));
Button circleBtn = new Button("", new Circle(0, 0, 8));
Button ellipseBtn = new Button("", new Ellipse(8, 8, 8, 6));
Button exitBtn = new Button("Exit");

A ToolBar control stores the reference of items in an ObservableList<Node>. Use the getItems()
method to get the reference of the observable list.

The default constructor of the ToolBar class creates an empty toolbar:

ToolBar toolBar = new ToolBar();
toolBar.getItems().addAll(circleBtn, ellipseBtn, new Separator(), exitBtn);

The ToolBar class provides another constructor that lets you add items:

ToolBar toolBar = new ToolBar(rectBtn, circleBtn, ellipseBtn,
 new Separator(),
 exitBtn);

The orientation property of the ToolBar class specifies its orientation: horizontal or vertical. By default,
a toolbar uses the horizontal orientation. The following code sets it to vertical:

// Create a ToolBar and set its orientation to VERTICAL
ToolBar toolBar = new ToolBar();
toolBar.setOrientation(Orientation.VERTICAL);

Exemple
27

Département informatique - IUT de Lille - Université de Lille

BorderPane

VBox

HBox

Label Pane TextField

ListView

HBox

Button Slider Label ImageView Slider
x3

FolderView
center bottom left

Ajout de noeuds au conteneur

Méthode getChildren() du conteneur

Puis utilisations des méthodes:

add(Node e)
addAll(Node… Elements)

28

Département informatique - IUT de Lille - Université de Lille

Java varargs …

Syntaxe qui permet de définir un nombre variable d’arguments de même type

Sans varargs :

public String myMethod()

public String myMethod(String value)

public String myMethod(String val1, String val2)

ou

public String myMethod(String[] val)

avec

public String myMethod(String… val)

29

Département informatique - IUT de Lille - Université de Lille

Java varargs …

Règles :

- une méthode ne peut avoir qu’un seul paramètre varargs
- le paramètre varargs doit être le dernier

30

Département informatique - IUT de Lille - Université de Lille

JavaFX Hello World
31

Département informatique - IUT de Lille - Université de Lille

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3
 4 public class HelloJavaFX extends Application {
 5
 6 public void start(Stage stage) {
 7 stage.setTitle("Hello JavaFX Application");
 8 stage.show();
 9 }
10
11 public static void main(String[] args) {
12 Application.launch(args);
13 }
14 }

/Users/casiez/Documents/Enseignements2016-2017/IHM-IUT-... file:///var/folders/4j/tf1727lx1gqgq29_kcq3ctsm0000gn/T/tmp4o...

1 sur 1 09/11/16 08:19

Exemple
32

Département informatique - IUT de Lille - Université de Lille

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.layout.VBox;
 5 import javafx.stage.Stage;
 6
 7 public class SimpleScene extends Application {
 8
 9 public void start(Stage stage) {
10 VBox root = new VBox();
11 Label msg = new Label("Hello JavaFX");
12 root.getChildren().add(msg);
13
14 Scene scene = new Scene(root, 300, 50);
15 stage.setScene(scene);
16 stage.setTitle("Hello JavaFX Application with a Scene");
17 stage.show();
18 }
19
20 public static void main(String[] args) {
21 Application.launch(args);
22 }
23 }

/Users/casiez/Documents/Enseignements2016-2017/IHM-IUT-... file:///var/folders/4j/tf1727lx1gqgq29_kcq3ctsm0000gn/T/tmpbs...

1 sur 1 09/11/16 08:22

Générateurs d’interfaces
33

JavaFX Scene Builder

Département informatique - IUT de Lille - Université de Lille

34

Département informatique - IUT de Lille - Université de Lille

A retenir

Utilisation de conteneurs pour regrouper des Nodes

Fenêtre = Stage

Différentes stratégies de positionnement

35

Département informatique - IUT de Lille - Université de Lille

